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SUMMARY 

An efficient and versatile algebraic grid generation technique is presented for generating grid points in 
irregularly shaped and time-varying spatial domains. The method presented is based on the ‘two-boundary 
technique’ of Smith. The usefulness and the feasibility of the grid generation technique were demonstrated by 
(1) generating grid points inside one of the combustion chambers of a motored two-dimensional rotary engine 
and (2) obtaining numerical solutions for the flow field inside one of those combustion chambers. 

KEY WORDS Grid Generation Numerical Methods 

INTRODUCTION 

In order to obtain finite-difference solutions to partial differential equations (PDEs) that described 
fluid flow problems, the spatial domain of the problem must be replaced by a system of grid points. 
For computational efficiency, the number of grid points used should be kept to the minimum that 
is required to resolve spatially all significant features of the flow. For spatial domains with deforming 
and/or irregularly shaped boundaries and for flow problems with disparate length scales in 
different parts of the flow, the ideal distribution of grid points is usually non-uniform and changes 
with time. 

To facilitate the finite-difference method of solution (in particular, implementation of boundary 
conditions, algorithm development and programming), the moving and non-uniformly distributed 
grid points in the spatial domain are generally mapped onto a transformed domain in which they 
are stationary and uniformly distributed. In addition, grid lines as well as the boundaries of the 
spatial domain are mapped so that they correspond to co-ordinate lines in the transformed 
domain. As a result the transformed domain is either rectangular in shape or comprised of 
rectangular subregions. 

In practice, since grid points are stationary and uniformly distributed in the transformed domain 
(i.e. the locations of the grid points are known precisely), the mapping is from the transformed 
domain to the ‘physical’ spatial domain. For this reason, the mapping of grid points is known as 
grid generation, i.e. the generation of grid points in the ‘physical’ spatial domain. 

The mapping of grid points, or grid generation, is achieved by what are known as grid generation 
techniques. There are many different grid generation techniques and they are classified as either 
differential equation methods or algebraic methods.’-6 Differential equation methods require 
PDEs to be solved. Algebraic methods do not require the solutions of PDEs. As a result, algebraic 
methods are computationally much more efficient than differential equation methods. This is 
especially true for unsteady problems involving grid points that move in the spatial domain. 
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the ‘two-boundary technique’. This technique can generate non-uniformly distributed, but 
stationary, grid points in two- or three-dimensional spatial domains of fairly arbitrary shapes. In 
this paper, we extend the ‘two-boundary technique’ of Smith so that in addition to non-uniform 
distribution, the grid points can also move in the spatial domains. This extension is important to 
problems involving time-varying or deforming spatial domains and to problems in which regions 
of sharp gradients move about. 

To demonstrate the usefulness and the feasibility of the extended ‘two-boundary technique’ 
developed here, (1) grid points were generated inside the combustion chambers of a motored two- 
dimensional rotary engine and (2) numerical solutions were obtained for the flow inside one of 
those combustion chambers. Since the spatial domain represented by the combustion chambers 
of a motored rotary engine deforms considerably both in shape and in size, this domain and the 
flow that occurs in it serve as a good test of the grid generation technique presented here. 

Here, we note that the extended ‘two-boundary technique’ is demonstrated via a two- 
dimensional, time-varying spatial domain. However, the ideas presented here can readily be 
extended to time-varying, three-dimensional spatial domains. 

In the next section, the equations describing the combustion chambers of a motored two- 
dimensional rotary engine are given. Afterwards, the grid generation technique developed here is 
described in detail. Finally, the grid points generated and the solutions obtained are presented. 

A TIME-VARYING SPATIAL DOMAIN 

A motoring two-dimensional rotary engine is shown in Figure 1.  It consists of a housing, a rotor, a 
shaft and three apexes. Between the rotor, the housing and the apexes are three voids called 
combustion chambers. As the rotor rotates inside the housing, the combustion chambers move 
as well as deform. 

The Cartesian co-ordinates X ,  and Y ,  of the inner surface of the housing (denoted as surface 1 in 

‘Apex 

Figure 1 .  The rotary engine geometry 
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Figure 1) are described by the following parametric equations involving the parameter 

X ,  = E cos (3A) + (R + C)COS (A), 

Y, = E sin (3A) + (R + C) sin (A), 
(1) 

(2) 
where A varies between 0 and 2n. E,  R and C determine the shape of the rotary engine. Here E,  
R and C were set equal to 0.015 m, 0.1045 m and 0.005 m, respectively. 

The Cartesian co-ordinates X, and Y, of the outer surface of the rotor (denoted as surfaces 2,3 
and 4 in Figure 1) are described by another set of parametric equations involving the parameter 
~ ~ 8 ~ 9  

X ,  = E sin (0) + X,, cos (9/3) + YRo sin (0/3), 

Y,  = E cos (9) + YRo cos (9/3) - X,, sin (9/3), 
(3) 

(4) 

where 

X R O  = X ,  cos (7(/6) + YR sin ( ~ / 6 ) ,  ( 5 )  

YR, = YR cos ( ~ / 6 )  + X ,  sin ( ~ / 6 ) ,  

X ,  = Rcos(2V)- (3E2/R)sin(6V)sin(2V) 

+ 2E[1 -(9E2/R2)sin2(3V)]’~2cos(3V)cos(2V) - P,, 

+ 2E[1 - (9E2/R2)~in2(3~)]”2cos(3V)sin(2~) - P,, 

(7) 

(8) 

(9) 

(10) 

Y, = Rsin(2V)-(3E2/R)sin(6V)cos(2V) 

P, = P cos (2 V ) ,  

P,  = P sin (2 V) ,  

0 V ,  6 V 6 V,, 

V,  6 V 6  V,. 

The above equations represent surface 2 when the parameter V is between VL = n/6 and V, = 4 2 .  
When V is between V, = 5n/6 and V, = 7n/6, the above equations represent surface 3. Finally, 
when V is between V, = 3n/2 and V, = 11 n/6, the above equations represent surface 4. In the 
above equations, E and R take on the same values as those used in equations (1) and (2). 
P , ,  P , ,  Vl ,  V,,  V3 and V, describe the shape of the rotor pocket. Their definitions are given in 
Figure 2. Here P ,  = P ,  = 0.005, V ,  = V, + 075(VT - V,), V ,  = V,  + 0.625(VT - V,), 
V3 = V, + 0.375( V, - V,) and V, = V,  + 0.25( VT - V,). The crank angle, 9, is a function 
of time ( t )  and is given by 

8 =  s ’Rd t=Rt ,  0 (12) 

where 52 is the angular speed of the shaft. Here 52 was set equal to 5000 revolutions per minute. 



294 S.-L. YANG AND T. I-P. SHIH 

Figure 2. The rotor pocket geometry 

Because of the symmetry of this problem, we only wish to generate grid points inside one of the 
three combustion chambers as it moves inside the rotary engine. The combustion chamber chosen 
is the shaded region shown in Figure 1. 

GRID GENERATION TECHNIQUE 

For two-dimensional time-varying spatial domains, the mapping of grid points, or grid generation, 
involves the following co-ordinate transformation: 

( X ,  y ,  t )  7 2  (5 ,  rl, 4 (13) 

1 

0 

0 -  E 
I 

0 1 

Figure 3. (a) The 'physical' spatial domain. (b) The transformed domain 
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or 

where X, Y and t represent the ‘physical’ domain and 5, v]  and z represent the transformed domain 
(see Figure 3). 

Similar to other grid generation techniques, the goal of the extended ‘two-boundary technique’ is 
to determine the co-ordinate transformation (equations (14)-( 16)) so that co-ordinate lines of the 
transformed domain correspond to grid lines and boundaries of the ‘physical’ spatial domain. 

The extended ‘two-boundary technique’ developed here for generating grid points involves six 
major steps: 

1 .  Select a time stretching function, i.e. a relationship between t and z. 
2. Select two boundaries of the spatial domain that do not touch each other at any point. These 

two boundaries will coincide with two co-ordinate lines, v]  = 0 and v] = 1 ,  in the transformed 
domain. 

3. Describe the two boundaries selected above by parameter equations using the parameters 5 
and z, co-ordinates of the transformed domain. 

4. Define curves that connect the two boundaries. 
5. Control distribution of grid points by stretching functions. 
6.  Calculate the metric coefficients needed to obtain finite-difference solutions to fluid flow 

problems. 

In the following, the above six steps are described in detail by applying them to generate grid 
points in the combustion chamber geometry described in the preceding section. 

Step 1 -select a time stretching function 

Here the relationship between t and z is taken to be 

t = z, 

i.e. there is no stretching in time. For problems involving disparate time scales at  different periods 
in time, time stretching may be useful. 

Step 2-select two boundaries 

The next step is to select two boundaries of the spatial domain that do not touch each other at 
any point. For the spatial domain represented by the shaded area in Figure 1, we selected the two 
boundaries to be surface 1 and surface 2. 

The boundaries chosen determine the correspondence between the boundary of the time- 
varying spatial domain and the boundary of the transformed domain. Here we chose surfaces 2 and 
1 to correspond to co-ordinate lines v]  = 0 and q = 1, respectively (see Figure 3), i.e. 
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The above equations indicate that surfaces 1 and 2 must be expressed in parametric form in terms 
of the parameters 5 and 5. 

In general, the ‘two-boundary technique’ can only correctly map two boundaries. However, if 
the remaining two boundaries are straight lines as in the present problem, then they can also be 
mapped correctly. As will be shown in Step 4, the remaining two surfaces, surfaces 5 and 6 in 
Figure 1, were mapped to co-ordinate lines 5 = 0 and 5 = 1, respectively (see Figure 3). 

Here it is noted that many spatial domains of practical interest are characterized by only two 
boundaries that do not touch each other at any points. An example is the domain between an 
aerofoil and the inflow-outflow boundary. 

When one does encounter a spatial domain more complex than that discussed here, the ‘four- 
surface technique’ developed by Vinokur and Lombard” can be used. Vinokur and Lombard 
extended the ‘two-boundary technique’ of Smith so that all four boundaries can be mapped 
correctly. The technique presented in this paper can also be used in conjunction with the ‘four- 
surface technique’ of Vinokur and Lombard for generating grid points that move in the ‘physical’ 
spatial domain. 

Step 3-obtain parametric representations 

Once the two boundaries have been selected, the next step is to represent these two boundaries 
by parametric equations in terms of the parameters 5 and T. It is noted that since surfaces 5 and 6 
were mapped to co-ordinate lines 5 = 0 and 5 = 1, respectively, the parameter 5 can only vary 
between 0 and 1. 

A parametric representation of surface 1 is given by equations (1) and (2) in terms of the 
parameter A and a parametric representation of surface 2 is given by equations (3)-( 12) in terms of 
the parameters V and t .  t in equations (3)-(12) can be replaced by z because of equation (17). 
We now must relate A and V to 5 .  Since ( can only vary between 0 and 1, we relate A and V 
to 5 as follows: 

A -  A ,  t = 1 - -  
A,  - A,’ 

v- v, (=I- - - - - -  v,- v,’ 
where A ,  = (7r/6) - (8/3), A ,  = A ,  + 2n/3, V,  = .n/6 and V, = n/2. 8 in the expression for A ,  is 
given by equation (12) with t replaced by z. By substituting equation (22) into equations (1) and (2) 
and by substituting equation (23) into equations (3)-( 12), we obtain the desired parametric 
equations. 

Step 4-define connecting curves 

A number of interpolation techniques can be used to derive the curves for connecting the two 
boundaries selected in Step 2. Here we shall investigate only two methods, Lagrange interpolation 
and Hermite interpolation. 

Method 1 -Lagrange interpolation. By using Lagrange interpolation to interpolate between 
the two boundaries selected in Step 2, we can readily obtain the following functional form for the 
connecting curves:l 

(24) 

(25) 

X ( t ,  vl? 4 = X 2 ( 5 ,  411 (Y) + x l(t, v l ) l2 (v l ) ,  

Y(59 YI, 7) = y2 ( 5 9 4 4  ( v l )  + y ,  (5 ,  v l )  I2 (v l ) .  
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In the above equations, XI ,  Y,, X, and Y, are the co-ordinates of surfaces 1 and 2. These co- 
ordinates were determined in Step 3. The functions l , ( q )  and l , (q)  are constrained by 

l , ( q = O ) = l ,  l , ( q = l ) = O ,  
l,(q = 0)  = 0, l ,(q = 1) = 1. 

These constraints give 

Substitution of the above equations into equations (24) and (25) yields the desired functional form 
of the connecting curves based on Lagrange interpolation: 

X(5, q, 4 = ( 1  - V)X,(t? 4 + VXl (t, z), 
Y(t, q, 4 = (1 - d y, (t, 4 + YI Yl(t97). 

(26) 

(27) 
The connecting curves derived above using Lagrange interpolation have two disadvantages: 

1 .  In general, the connecting curves will not intersect the two boundaries perpendicularly. This 
makes it difficult to implement derivative boundary conditions. 

2. The two boundaries selected in Step 2 cannot be S-shaped. This is because connecting curves 
given by equations (26) and (27) are straight lines and hence will intersect an S-shaped 
boundary twice. This disadvantage severly limits the usefulness of equations (26) and (27). 

The disadvantages cited above are not insurmountable. Both disadvantages can be removed by 
defining a number of intermediate boundaries between the two boundaries selected. Such a 
procedure would be bery similar to the 'multi-surface technique' of Eiseman. 12-14 A simpler 
procedure for overcoming the aformentioned disadvantages is to use Hermite interpolation, which 
is described below. 

Method 2-Hermit interpolation. By using Hermite interpolation to interpolate between the 
two boundaries selected in Step 2, we can readily obtain the following functional form for the 
connecting curves:' 

X , ,  Y , ,  X ,  and Y, are the co-ordinates of surfaces 1 and 2 and were determined in Step 3. The 

8 Y(5, q = 1 ,  z)/dq still need to be determined. 
functions h~ (q), h 2 ( V ) ,  h3(YI), h4(V), ax (t, Y = 0, z)/aVr, ax((, V = 1, r)/aV, a y(t ,  q = 0, T ) / a r l  and 

h ,  (q), h2(q) ,  h3(q)  and h4(q) are determined from the following constrains: 
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giving 

The remaining functions a x ( < ,  y = 0, t)/ay, ax([, y~ = 1, z)/dy, d Y(5, y = O,z)/ay and d Y(5, y 
= l,z/ay are chosen so that the connecting curves (equations (28) and (29)) perpendicularly 
intersect the two boundaries selected in Step2. In order for the connecting curves given by 
equations (28) and (29) to intersect boundary 1 perpendicularly in the ‘physical’ spatial domain, the 
dot product of et (the vector tangent to boundary 1) and e,  (the vector tangent to the connecting 
curve) at any point on boundary 1 must be zero, i.e. 

eg-e, = 0, 

or 

From equation (34), it can be seen that orthogonality is guaranteed if the following two conditions 
are satisfied: 

(35) 
Wt, vl = 0 , 4  a y2 ( 5 9 7 )  

a t  ’ 
or = - K 2 ( 0  

ax(<, V ]  = o,z) - a Y,K Z) - -____ 
JYI d t  all 

In a similar manner, we can show that for orthogonality at boundary 2, the following conditions 
must be satisfied: 

Kl(5)  and K 2 ( t )  in equations (35)-(38) are chosen by trial and error to ensure that grid lines 
do not overlap each other at the interior of the ‘physical’ spatial domain. For the present problem 

K , ( t ) =  K2(0=2{CX1(5,+ X2( t J ) I2  + CY,(t,+ y2(t,412}1’z. (39) 

Since ax,(( ,  z ) / X ,  ax2((, z)/dt, dYl(<, z)/at and 8Y2(t, z ) / X  can be evaluated 
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analytically from the parametric equations derived in Step 3, a x ( < ,  v]  = 0, z)/av], a x ( ( ,  v] = 
l,z)/dv], aY([,v] = O,z)/av] and a Y ( 5 , y  = l,z)/av] are calculated by using equations (35)-(39). 

Substitution of equations (30)-(33) and equations (35)-(39) into equations (28) and (29) gives 
the desired connecting curves based on Hermite interpolation. 

In this paper, grid points inside the cumbustion engine geometry described in the preceding 
section were generated by using equations (28) and (29) except for surfaces 5 and 6. Surfaces 5 
and 6 are straight lines in the 'physical' spatial domain and were mapped by using 
equations (26) and (27). 

Step 5-control distribution of grid points 

By following Steps 1 to 4 described above, we can map a system of moving and non-uniformly 
distributed grid points in the 'physical' spatial domain onto a transformed domain where all of 
the grid points are stationary and uniformly distributed. The question now is: are we satisfied 
with the distribution of grid points in the 'physical' spatial domain? For example, are there 
enough grid points in regions containing sharp gradients? If the answer is no, then stretching 
functions can be used to redistribute the system of grid points. Several useful stretching functions 
are given in References 15 and 16. 

For the combustion chamber geometry described in the preceding section, a large number of 
grid points are needed near the walls of the combustion chamber to resolve the boundary layer 
flow there. To concentrate more grid points near surfaces 5 and 6 (see Figure 3), we replaced 
equations (22) and (23) by the following equations: 

v- v, 
1 -05(B,+ l ) -B,{ l  + [(B,+ l)/(B,- 1)](2'-1)}-1. 

vT - vL 

To concentrate more grid points near surfaces 1 and 2 (see Figure 3), we replaced v]  in 
equations (26)-(29) by the fol1.owing expression: 

(42) 
Equation (42) and the right-hand sides of equations (40) and (41) are stretching functions. By 

varying the parameters B, and B, between 0 and 1 ,  different concentrations of grid points can 
be obtained. Here B, and B, were set equal to 0.1 and 0.3, respectively. 

0*5(B, + 1)  - B,{ 1 + [(B, + 1)/(B, - 1)](2q-1)}-1.  

Step 6-calculate the metric coefficients 

Once we have obtained a satisfactory distribution of grid points in the 'physical' spatial domain, 
we can proceed with the determination of the metric coefficients. The metric coefficients 

obtain solutions to partial differential equations (PDEs) on the grid system generated here can 
be calculated from the following equations (pp. 252-255 of Reference 16, and Reference 17): 

gX = ay/ax, 5,  = ay/a y, 5,  = ag/a t ,  q, = aq/ax, qy  = aq/a Y and q, = av]/at) needed to 

5, =JY,, (43) 

5, = - JX,, (44) 

5, = J( Y J ,  - x, Y,), (45) 
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where J is the Jacobian and is given by 

J = l / ( X , Y ,  - X,Y,x). (49) 
Even though X ,  = axlay, x ,  = ax/avl, x ,  = ax/&, Y,  = aria<, Y, = ar/avl and Y, = 

a Y/az in equations (43)-(49) can be evaluated analytically, these terms should be evaluated by 
finite-difference  method^.^,^ Depending on how the PDEs are cast (e.g. in strong conservation 
law form or in chain rule conservation law form), X,, X , ,  X , ,  Y,, Y,  and Y, may be required 
to be finite-differenced in certain prescribed manners to avoid geometric induced  error^.'^,^^ 

If the PDEs to be solved are cast in chain rule conservation law forrn.l8 X , ,  X , ,  Y ,  and 
Y, can be calculated by using second-order accurate in space central-difference formulae. X ,  
and Y, can be calculated from the following generalized time-difference forrnula:l9 

In the above equation, AT denotes the time step size; y1 and y 2  are constants; and U denotes 
either X and Y. Equation (50) can reproduce most commonly used time-difference formulae by 
varying y1 and y 2 .  Here y1 and y2  were set equal to 0 5  and 0, respectively. 

RESULTS 

In order to demonstrate the usefulness and the feasibility of the technique presented in the 
previous section for generating grid points in deforming spatial domains, 

1. Grid points were generated inside one of the combustion chambers of a motored two- 
dimensional rotary engine. 

2. Numerical solutions were obtained for the flow field inside one of the combustion chambers 
of a motored two-dimensional rotary engine with the intake and exhaust ports closed. 

Figures 4-9 show grid points generated inside one combustion chamber at several different 
crank angles. The grid systems shown in Figures 4-6 were generated by following Steps 1 
to 4 described in the preceding section, i.e. no stretching functions were used. The grid systems 
shown in Figures 7-9 were generated by following Steps 1 to 5, i.e. stretching functions were 
used. Comparing Figures 4-9 indicates that the stretching functions employed can concentrate 
grid points near the walls of the combustion chamber. Figures 4-9 show that the technique 
presented here can be used to generate grid points in time-varying or deforming spatial domains. 

To further demonstrate the usefulness as well as the feasibility of the grid generation technique 
presented here, numerical solutions were obtained for the flow field inside the combustion 
chambers of a motored two-dimensional rotary engine with the intake and exhaust ports closed. 
The description of this rotary engine problem as well as the details of the governing equations 
and the numerical method of solution are given Here only a brief description is 
given to facilitate interpretation of the results. 

The geometry of the problem studied is shown in Figure 1 .  Initially, the combustion chamber 
is assumed to be filled with stagnant air at constant temperature and pressure. Suddenly, the 
shaft starts to rotate at an angular speed of 5000 revolutions per minute. The rotation of the 
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Figure 4. Grid points generated by following Steps 1 to 4. 
No stretching functions used. The crank angle is 150" 

Figure 7. Grid points generated by following Steps 1 to 5. 
Stretching functions used. The crank angle is 150" 

Figure 5. Grid points generated by following Steps 1 to 4. 
No stretching functions used. The crank angle is 360" 

Figure 8. Grid points generated by following Steps 1 to 5. 
Stretching functions used. The crank angle is 360" 

Figure 6. Grid points generated by following Steps 1 to 4. 
No stretching functions used. The crank angle is 840" 

Figure 9. Grid points generated by following Steps 1 to 5. 
Stretching functions used. The crank angle is 840" 
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Figure 10. Flow pattern inside the combustion chamber at crank angle 136" 

Figure I I .  Flow pattern inside the combustion chamber at crank angle 254" 
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Figure 12. Flow pattern inside the combustion chamber at crank angle 844" 

shaft causes the rotor to rotate which in turns causes the air inside the combustion chamber to 
move and to be compressed or expanded. 

The deforming spatial domain of this problem was replaced with grid points generated by 
following Steps 1 to 6 described in the preceding section with 51 grid points spanning the i; 
direction and 21 grid points spanning the q direction. 

The governing equations used to obtain solutions were the conservation equations of mass, 
momentum and energy valid for unsteady, two-dimensional, compressible, laminar flows of a 
viscous and thermally conducting ideal gas. The increased mixing due to turbulence was modelled 
by appropriately chosen effective transport properties. The thermal conductivity was selected by 
taking the turbulent Prandtl number to be equal to unity. These governing equations were first 
written in Cartesian co-ordinates ( X ,  Y and t )  and then transformed to the 5-q-r co-ordinate 
system in chain rule conservation law form.'* 

Numerical solutions to the governing equations described above were obtained by the implicit 
factored method of Beam and Warming.' 9*20 Boundary conditions needed to obtain solutions 
were implemented implicitly.22 

Numerical solutions were generated for three revolutions of the shaft (or one complete 
revolution of the rotor). In Figures 10-12, results for the velocity are presented in 
graphical form illustrating the flow pattern at several different crank angles. As described in 
References 20 and 21, the results obtained are reasonable. 

CONCLUSION 

In this paper we have presented an efficient and versatile algebraic grid generation technique 
for generating grid points inside time-varying or deforming two-dimensional spatial domains. 
The procedure for implementing this grid generation technique was described in detail by 
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generating grid points inside one of the combustion chambers of a motored two-dimensional 
rotary engine. The usefulness and the feasibility of the grid generation technique presented were 
demonstrated by the successful generation of grid points inside that combustion chamber and 
by obtaining reasonable numerical solutions to the flows that take place inside that combustion 
chamber. 
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